Regular Grammars
 Lecture 12
 Section 3.3

Robb T. Koether
Hampden-Sydney College

Mon, Sep 19, 2016

Outline

(9) Regular Grammars
(2) Regular Languages
(3) Assignment

Outline

(9) Regular Grammars

(2) Regular Languages

(3) Assignment

Regular Grammars

Definition (Regular grammar)

A regular grammar is a 4-tuple (V, T, S, P), where

- V is a set of symbols, called variables, or nonterminals.
- T is a set of symbols, called terminals.
- $S \in V$ is the start symbol.
- P is a set of production rules, or rewrite rules of the following forms:
- $A \rightarrow a B$
- $A \rightarrow \lambda$
where A and B are nonterminals and a is a terminal.

Regular Grammars

- To generate strings from the grammar, we begin with the start symbol and apply the production rules until we obtain a string of all terminals.

Example

Example (Regular grammar)

Let the rules be

$$
\begin{array}{ll}
S \rightarrow \mathbf{a} X & Y \rightarrow \mathbf{a} Y \\
S \rightarrow \mathbf{b} Y & Y \rightarrow \mathbf{b} Y \\
S \rightarrow \lambda & Y \rightarrow \lambda \\
X \rightarrow \mathbf{a S} & Z \rightarrow \mathbf{a} Y \\
X \rightarrow \mathbf{b} Z & Z \rightarrow \mathbf{b} X \\
X \rightarrow \lambda &
\end{array}
$$

Example

Example (Regular grammar)

This list of rules may be consolidated as

$$
\begin{aligned}
& S \rightarrow \mathbf{a} X|\mathbf{b} Y| \lambda \\
& X \rightarrow \mathbf{a} S|\mathbf{b} Z| \lambda \\
& Y \rightarrow \mathbf{a} Y|\mathbf{b} Y| \lambda \\
& Z \rightarrow \mathbf{a} Y \mid \mathbf{b} X
\end{aligned}
$$

Example

Example (Regular grammar)

- What strings can be obtained by these rules?
- $S \Rightarrow \mathbf{a} X \Rightarrow \mathbf{a a} S \Rightarrow \mathbf{a a b} Y \Rightarrow \mathbf{a a b}$.
- $S \Rightarrow \mathbf{b} Y \Rightarrow \mathbf{b b} Y \Rightarrow \mathbf{b b a} Y \Rightarrow \mathbf{b b a}$.
- What other strings?
- Is there a pattern?

The Language of a Grammar

Definition (Derivation)

A derivation is a sequence of applications of production rules, beginning with the start symbol and ending with a string in Σ^{*}.

Definition (Language of a grammar)

The language of a grammar is the set of all strings in Σ^{*} that can be derived from the grammar.

Outline

(1) Regular Grammars

(2) Regular Languages

(3) Assignment

Regular Grammars and Regular Languages

Theorem (Equivalence of regular grammars and regular languages)

A language is regular if and only if it is the language of a regular grammar.

Regular Grammars and Regular Languages

Proof (\Leftarrow).

- Given a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$,
- Let $V=Q$.
- Let $T=\Sigma$.
- Let $S=q_{0}$.
- For each transition $\delta(p, a)=q$, write a production $p \rightarrow a q$.
- For each $q \in F$, write a production $q \rightarrow \lambda$.
- It is clear that the strings derived from this grammar are exactly the strings in $L(M)$.

Regular Grammars and Regular Languages

Proof (\Rightarrow).

- All the steps in the previous proof are reversible.

Example

Example (Constructing a DFA from a regular grammar)

- Construct a DFA from the grammar

$$
\begin{aligned}
& S \rightarrow \mathbf{a} X|\mathbf{b} Y| \lambda \\
& X \rightarrow \mathbf{a} S|\mathbf{b} Z| \lambda \\
& Y \rightarrow \mathbf{a} Y|\mathbf{b} Y| \lambda \\
& Z \rightarrow \mathbf{a} Y \mid \mathbf{b} X
\end{aligned}
$$

- What is the language of the grammar?

Example

Example (Constructing a regular grammar from a DFA)

- Construct a regular grammar for the regular language
$\{w \mid w$ is a binary number that is a multiple of 3$\}$.
- Write a regular expression for the language in the previous example.

Example

Example (Constructing a DFA from a nonregular grammar)

- Construct a DFA from the following grammar.

$$
\begin{aligned}
& S \rightarrow \mathbf{a} S \mid \mathbf{a b b} A \\
& A \rightarrow S|\mathbf{b} S| \mathbf{b a} .
\end{aligned}
$$

Outline

(1) Regular Grammars

(2) Regular Languages

(3) Assignment

Assignment

Assignment

- Section 3.3 Exercises 1, 2, 3, 4, 5, 10, 11, 12.

